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Abstract. “Dual Transparent Liquid” refers to a liquid and its con-
tainer, both being transparent. Accurately estimating the levels of such
a liquid from arbitrary viewpoints is fundamental and crucial, especially
in AI-guided autonomous biomedical laboratories for tasks like liquid
dispensing, aspiration, and mixing. However, current methods for esti-
mating liquid level focus on scenarios of a single instance captured from
a fixed view. We propose a new dual transparent liquid level estimation
paradigm, including a dataset, methods, and practices. The dual trans-
parent liquid dataset, named DTLD, comprises 27,458 images with four
object instances captured from multiple views across three biomedical
lab scenes. Based on DTLD, we propose an end-to-end learning method
for detecting the liquid contact line, followed by an approach to esti-
mate the liquid level. To enhance contact line detection, a color rec-
tification module is proposed to stabilize the color distribution at the
local region of the air-liquid interface. Additionally, our method sur-
passes the current best approach, reducing the mean absolute percent-
age error by a percentage of 43.4. The dataset and code are available at
https://github.com/dualtransparency/TCLD.

Keywords: Liquid level estimation · Dual transparent liquid · Contact
line detection · Autonomous biomedical laboratory

*Contributed equally as co-first authors.
†Corresponding author.

https://orcid.org/0009-0004-3120-7407
https://orcid.org/0000-0002-2085-5028
https://orcid.org/0009-0000-4730-8852
https://orcid.org/0000-0001-6732-7823
https://orcid.org/0000-0001-9427-3883
https://orcid.org/0000-0002-7739-4146
https://orcid.org/0000-0003-1721-6126
https://github.com/dualtransparency/TCLD


2 X.Wang et al.

50% 50%

10ml
T25 flask

T25 flask T175 flask

waste

medium

counting 

slide

G-rexT75 flask

Task 1 Task 2 Task 3 Task 4

Fig. 1: Four universal liquid handling tasks in ABLs that require liquid level estimation.

1 Introduction

Recent work by Szymanski et al . [31], Boiko et al . [2], Triantafyllidis et al . [33],
Xie et al . [35], and Burger et al . [3] showcases the evolution of biomedical labora-
tories towards incorporating autonomous or humanoid-like robots for laboratory
AI applications. This integration of advanced computer vision and robotics her-
alds a new era of lab systems characterized by flexibility and efficiency. Unlike
traditional automation setups with fixed coordinates for container placement,
these innovative lab systems allow for the dynamic positioning of containers.
In AI-guided autonomous biomedical laboratories (ABLs), liquid handling such
as liquid dispensing, aspiration, and mixing emerges as a fundamental yet crit-
ical task [20, 37]. The first phase of liquid handling—accurate liquid level es-
timation—is vital for various laboratory procedures. We give examples of four
universal biomedical liquid handling tasks conducted in ABLs in Fig. 1, includ-
ing 1) adding a precise amount of cell culture medium, 2) equally dividing cell
suspension, 3) aspirating waste liquid, 4) mixing and sampling for cell count-
ing [1, 7, 14, 28]. We routinely use robotic pipettes to perform these essential
tasks in our ABLs, which rely on simultaneous liquid level estimates for sequen-
tial executions. These tasks are unfeasible without a precise estimation method
due to the lack of liquid level. This necessity underscores the importance of our
research in tackling the challenges of liquid level estimation in ABL scenarios.

“Dual Transparent Liquid” refers to a liquid and its container, both being
transparent. Accurately estimating levels of dual transparent liquid is a further
challenging task in ABLs. Current research concentrates on cases of a single in-
stance captured from a fixed camera view, which do not adequately reflect the
complexity of actual laboratory conditions. For instance, a study by Gautham
et al . [26] (named CMU-liquid) introduces a method for estimating liquid levels
within a single transparent cup under one fixed camera perspective. However,
real ABL environments often involve multiple objects organized in complex and
flexible arrangements, rendering it difficult for a camera to capture the proper
image of each object from a direct frontal viewpoint. Environmental settings
differ across ABLs, including background objects, textures, and object arrang-
ments. Current single-instance methods are ineffective in estimating liquid level
for multiple cluttered and occlusive object instances in real laboratory scenes.
Multiple object instances captured from arbitrary viewpoints, representing a
more realistic setting, have yet to be thoroughly investigated. Our ability to
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Fig. 2: Critical challenges in the “Dual Transparent Liquid” scenario across three
biomedical laboratory scenes, representing realistic complexities of multi-instance ar-
rangements captured from multiple views. “Dual” refers to the transparent liquid within
its transparent container, visualized by a dashed box inside the object box. We present
Region of Interest (ROI) images captured from distinct camera views for two selected
object instances: a cylindrical bioreactor and a cubic cell flask. We highlight two ex-
amples of challenging cases with red boxes: occluded and narrow-view cases.

estimate liquid levels in flexibly placed containers from arbitrary viewpoints is
a fundamental prerequisite for implementing laboratory AI. Therefore, we con-
duct research towards dual transparent liquid level estimation to bridge the gap
between the demanding requirements of biomedical experiments and existing
methods. Fig. 2 demonstrates the challenges of multiple instances under multi-
ple camera views within the “Dual Transparent Liquid” context.

In response to this gap, we propose a new paradigm for dual transparent
liquid level estimation including the dataset, methods, and practices. We first
introduce the Dual Transparent Liquid Dataset (DTLD), which captures mul-
tiple instances in one image from multiple views across three ABL settings,
comprising 27,458 images. DTLD enhances the scope beyond the current CMU-
liquid dataset [26] regarding viewpoints, object instances, laboratory scenes, and
the number of image samples. It also enriches complexity by incorporating seven
lighting conditions, five liquid colors, and three background textures. DTLD thus
establishes the benchmark dataset, characterized by its multi-instance, multiple
viewpoints, and multi-factorial nature. It also poses unprecedented challenges
and demands for liquid level estimation methods.
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Object boundaries in images are stable features for detection tasks [16]. We
use the Bézier curve to represent the boundary of the air-liquid interface (ALI),
termed as the contact line. We further propose the Transparent Contact Line
Detection (TCLD) method to detect contact lines in linear or curved forms
within the DTLD. The parameterized Bézier curves, defined by multiple control
points, provide an insightful advancement in liquid level estimation.

We observe that imaging characteristics at ALIs are influenced by varying
optical refractions and reflections under different conditions. Some affected ALI
cases are shown in Fig. 2. To enhance the TCLD’s resilience to these variations,
we present a Color Rectification Module (CRM) to stabilize the color distribution
at ALI region for local image enhancement [30] and restorationt [15,22].

Experiments with the DTLD dataset confirm TCLD’s superiority in tackling
the multifaceted challenges of dual transparent liquid. Combining CRM increases
contact line detection precision by 10.33 points. Our liquid level estimation ap-
proach surpasses the SOTA approach, reducing the mean absolute percentage
error by a percentage of 43.4. Our primary contributions are summarized as:

– We formally define and investigate liquid level estimation in the context of
the dual transparent liquid, making a foundational contribution to the field.

– We create the DTLD, a comprehensive dataset encompassing 27,458 images
from three ABLs, with multiple instances and captured from multiple view-
points, offering more realistic and challenging scenarios.

– We propose the TCLD method, leveraging a CRM and Bézier curve detection
module, enhancing liquid level estimation performance.

2 Related Work

2.1 Methods for Estimating Liquid Levels

Conventional methods for estimating liquid level that rely on thermal [29], op-
tical [36], acoustic [34], and depth sensors [8] encounter challenges in accurately
estimation liquid levels within dual transparent systems. Although image pro-
cessing algorithms [9,11], including edge detection, threshold segmentation, and
region-based segmentation, have been employed, they exhibit reduced adapt-
ability and robustness in dynamic or complex conditions. Deep learning stud-
ies [23, 26, 39] in this domain utilize Convolutional Neural Networks (CNNs) to
segment the liquid area from an RGB image. Nonetheless, these models’ ability
to generalize is compromised by variables such as multiple camera perspectives
and fluctuating illumination. Moreover, the output is a pixel-based liquid level,
which does not translate to practical liquid measurements needed for liquid han-
dling tasks. The conversion from a 2D-pixel representation to a 3D measurement
remains elusive in multi-instance scenarios under arbitrary viewpoints.

2.2 Bézier Curve Modeling

The Bézier curve, a primary model for curve delineation, excels at portraying
boundary characteristics within an image, encompassing salient features like
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edges, corners, and textures. Motivated by this advantage, we integrate the
Bézier curve to define liquid contact lines as linear or curved contours.

c(t) =

n∑
i=0

Bk
i b

k
i (t), 0 ≤ t ≤ 1. (1)

k denotes the degree, Bk
i symbolizes the i-th control point, and bki (t) signifies

the Bernstein basis polynomial where Ci
k is a binomial coefficient, noted as:

bki (t) = Ci
kt

i (1− t)
k−i

, i = 0, . . . , k. (2)
Recent research [12,13,21,25] has incorporated the Bézier curve within deep

learning frameworks. ABCNet [25] first introduces the idea of amalgamating the
Bézier curve, establishing the Adaptive Bézier-Curve Network equipped with a
BézierAlign layer for feature extraction, aimed at detecting curved scene text.
Drawing on ABCNet’s innovation, Feng et al . [12] adaptes the Bézier curve for
parametrically modeling lanes in landscape imagery. Our methodology extends
the application of Bézier curve modeling to the context of dual transparent
liquid, addressing unique challenges of contact line detection.

Two key factors motivate our choice of Bézier curves. Firstly, contact line de-
tection requires predicting a smooth curve, while using Polynomials may result in
excessive fitting, particularly with high-order Polynomials. Furthermore, Bézier
curves can more accurately fit the contact line than Polynomials, as verified by
an experiment in the Supplementary Material.

3 The DTLD Benchmark

Estimating liquid level with dual transparency presents significant complexities
in practical laboratory settings due to a range of factors such as variations in
camera angles, number of objects, lighting, the color of the liquids, the shape of
the containers, the background textures, and the presence of distracted objects.
The distinct characteristics of the contact line are often weakened and obscured
by unpredictable phenomena in optical refraction, such as irregular highlights
and shadows, distorted textures, and projected object frames. Notably, existing
large-scale datasets for transparent objects [6, 10, 24] have not incorporated liq-
uids within transparent containers, thereby limiting the development of liquid
level estimation methods. Although two datasets of transparent liquids (CMU
Liquids) have been proposed by Gautham Narasimhan et al . [26] for robotic
pouring tasks, their scope is confined to a single container type and captured
from a fixed frontal view. This dataset underestimates the challenges encoun-
tered in real ABLs, creating a disparity between settled conditions and realistic
scenarios. We propose the labeled dataset DTLD, designed to reflect the mul-
tifaceted complexity experienced in real-world ABL settings. DTLD introduces
several novel features: 1) multiple viewpoints, 2) multiple objects, 3) diverse
lighting conditions, and 4) multi-colored liquids. Importantly, we measure liq-
uid level as a dynamic continuous variable rather than as discrete levels. The
analytical data and comparisons are listed in Tab. 1.
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3.1 Data Collection

We employ high-resolution cameras to capture the necessary visual data from
multiple perspectives. Four objects including three cell flasks (T25, T75, T125),
and one cylinder bioreactor (G-rex) are arranged on a tabletop, each containing
liquids of different colors and levels. Our data collection utilizes a RealSense
D435i stereo depth camera to simultaneously capture RGB and depth data at a
resolution of 1280×720 at 30 FPS. The camera is manually maneuvered around
the objects, ensuring a comprehensive range of spatial trajectories encompass-
ing various distances and angles. We collect data at three ABLs with distinct
background textures and distractors shown in Fig. 2, capturing seven, four, and
three sequences of images.

Each sequence combines unique object arrangement, lighting conditions, and
liquid color. The object arrangement represents the three-dimensional transi-
tions and orientations of the object, producing diverse poses of the object and
the contained liquid. The lighting configuration—both in intensity and direc-
tion—affects the liquid’s internal refractions and reflections, altering properties
like location, shape, brightness, and specular effects of objects in images. Liq-
uids of different colors may have different refractive indices, leading to specific
imaging variations as light passes through. Such challenges are inherently associ-
ated with dual transparency and are neither discerned nor addressed in scenarios
restricted to transparent objects without liquids. While the DTLD dataset cur-
rently contains four objects, it represents a pioneering effort in ABL research.
We have carefully curated the dataset by selecting four representative objects
to mimic complex feature variations due to optical reflections and refractions
typical in ABL settings. DTLD showcases challenging cases to validate TCLD’s
accuracy for detecting contact lines and estimating liquid level.

3.2 Data Annotation

Every sample in DTLD is annotated with two critical pieces of information: each
container’s 6D pose—which encompasses the three-dimensional position and ori-
entation—and the precise contact line within. The rationale for labeling the 6D
pose is twofold: firstly, it allows for adjusting the 6D pose estimation method to
our specific experimental setting. Secondly, understanding the container’s pose is
crucial for accurately determining the liquid level, as the container’s orientation
can significantly influence the perceived level of the liquid within.

Contact Line Annotation We employ the LabelMe [32] to pinpoint critical
points on the contact line of cubic flasks and the cylindrical bioreactor. We
map out a rectangle of ALI for the cubic flask by annotating the four vertices.
The cylindrical bioreactor’s elliptical ALI is marked with sixteen evenly spaced
points along its contour. These annotations capture precise coordinate data that
researchers can use to interpolate further points. Following established protocols,
we produce a comprehensive set of ground truth annotations, including contact
lines, ALI masks, and contact line segmentation masks.
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Table 1: Statistics of DTLD dataset and the comparison with CMU Liquids.

Dataset # objects # scenes # images # liquid # lighting multi multiple continuous distractorscolor condition -instance viewpoints level

CMU Liquids [26] 1 1 4,601 2 1 × × ✓ ×
DTLD (Ours) 4 3 27,458 5 7 ✓ ✓ ✓ ✓
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Fig. 3: Overview of the liquid level estimation framework: The process involves 6D
pose estimation using RGB-D input and CAD models, along with color rectification
and Bezier curve regression modules for contact line prediction, ultimately leading to
liquid level estimation. Lresidual and LBezier represent color residual loss and Bézier
curve detection loss, respectively. The snowflake symbol denotes a pre-trained model.
The arrows pinpoint the ALI regions, and the dashed boxes depict residual regions.

6D Pose Annotation Annotating the 6D pose of each object instance re-
quires an efficient pipeline. We leverage ProgressLabeller [5], a tool specifically
designed to annotate the 6D poses of image sequences involving transparent ob-
jects. The program integrates image sequence and CAD models of objects into
the workspace. Subsequently, the Kinectfusion [27] and ORB-SLAM3 [4] are uti-
lized for accomplishing 3D reconstruction. We calibrate re-projections to ensure
the seamless alignment between each object and the imported CAD model. Fi-
nally, 6D pose annotations including 6D poses, segmentation masks, and depth
samples are generated and exported in BOP [19] format.

3.3 Data Analysis

We comprehensively analyze the DTLD across various data distributions, ex-
amining object instances, viewpoints, lighting conditions, and scene types. The
Supplementary Material demonstrates complete data visualization results.
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4 Method

4.1 Transparent Contact Line Detection (TCLD)

The TCLD method integrates CRM and BCRM to perform contact line detec-
tion efficiently. The comprehensive framework is delineated in Fig. 3.

The training phase begins with a one-to-one assignment between the predic-
tions y and the ground truths, which are detailed in the subsequent annotations

ŷ =
{
B̂k

i , m̂, Îres, l̂
}
, (3)

where B̂k
i is the i-th control points of k-order Bézier curve, m̂ is the liquid curve

mask, Îres is liquid surface color residual and l̂ is liquid height.

Bézier-Curve Regression Module (BCRM) The BCRM is introduced to
process an RGB image input I ∈ R3×H×W , where H and W define the spatial
dimensions, and directly yield the Bézier curve control points

{
Bk

i

}k+1

i=1
. Drawing

upon the principles of ABCNet [25], the BCRM refines the architecture into a
single-stage, end-to-end model specifically optimized for contact line detection
tasks. We initially employ ResNet-34 [17] as backbone network to extract the
feature representation FI ∈ RC×H

′
×W

′

, where C denotes the channel count, and
H

′
and W

′
(H

′
= H/16, W

′
= W/16) represent the reduced spatial dimensions.

Given feature map FI , the output can be donated as:{{
Bk

i

}
, p

}W ′

j
= {MLPB (Fo) , MLP p (Fo)} , (4)

where, MLP stands for Multilayer Perceptron, and Fo ∈ RC×H
′
×W

′

represent
the feature obtained by downsampling FI through an average pooling layer as

Fig. 3, BCRM predict W ′ Bézier curve proposals
{{

Bk
i

}k+1

i=1
, p

}W ′

j
, MLPB
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and MLP p denote the regression head and logit head for control points and the
probability of each curve. The regression head generates an output of W

′ × 8 to
estimate four control points of the Bézier curve, while the logit head outputs a
W

′
-dimensional vector denoting the probability.
We define Bézier control points regression loss Lreg as:

Lreg =
1

k + 1

∑
i

∥∥∥Bk
i − B̂k

i

∥∥∥
2
. (5)

We use binary cross-entropy loss Llogit for binary classification tasks to determine
the presence or absence of proposals. The Bézier curve detection loss is:

LBezier = λ1Lreg + λ2Llogit. (6)

Color Rectification Module (CRM) Examining the visualized outcomes
revealed that a significant proportion of incorrect predictions coincides with the
ALI region. It is suggested that complex ALI features, influenced by optical
refractions and reflections, could adversely affect contact line detection. Several
patterns of affected ALI cases are illustrated in Fig. 4. A manual review analysis
confirmed that around 48.3% of test images exhibited such complications. This
observation led to the formulation of a research question to mitigate the effects
of variable optical phenomena on the ALI.

Residual learning is a fundamental deep learning approach widely used for
image enhancement [30] and image restoration [15,22]. Inspired by these princi-
ples, we propose a local image rectification module, named CRM, for stabilizing
the color distribution within ALI to achieve image enhancement and restoration.

We conceptualize the color rectification process as combining the raw RGB
image I and the color residual image Ires. Thus, the resultant color-stabilized

image
−
I can be donated as:

−
I (x, y) = I(x, y) + Ires(x, y), x ∈ [0,W ], y ∈ [0, H]. (7)

Given an image sample I ∈ R3×H×W with H and W as spatial dimensions,
the CRM leverages a ResNet-18 based backbone network [17] to extract features
from three distinct layers, represented as Fi ∈ RCi×H

′
i×W

′
i for i ∈ {1, 2, 3},

where Ci, H
′

i and W
′

i denote the channel count and spatial dimensions of the
i-th layer’s features, respectively. These features are then fed into a specialized
decoder that upsamples Fi to Fo ∈ RCo×H×W . A convolutional head processes
Fo and outputs the final color residual predict result Î ∈ R3×H×W . See Fig. 5.

We employ Mean Square Error(MSE) as residual loss Lresidual to supervise

CRM learning progress. We obtain
−
I by averaging RGB values masked by ALI

in the raw image I. The ground truth Ires is calculated as Ires =
−
I − I.

Lresidual =
1

N

∑∥∥∥Ires(x, y)− Îres(x, y)
∥∥∥2 (8)
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Overall loss The total loss L is a weighted sum of the above losses. Specifically,
following [38], we introduce line segmentation loss Lseg aims at accuracy at the
pixel level within line segmentation tasks using weighted binary cross-entropy
loss. The overall loss function is defined as:

L = λ1Lreg + λ2Llogit + λ3Lseg + λ4Lresidual. (9)

Weights are preset to: λ1 = 1.0, λ2 = 0.1, λ3 = 0.75 and λ4 = 1.0. Default values
are empirically chosen to ensure that each component contributes proportionally,
fostering an equilibrium in model performance.

4.2 Liquid Level Estimation

Given that TCLD detects the contact line for each object instance, we need
additional information to estimate the liquid level. 6D pose information can help
understand the rotation and transition of the object instance. We use a state-
of-the-art 6D pose estimation method, FFB6D [18] based on RGB-D images to
estimate the 6D poses for all object instances. Based on the estimated translation
and rotation matrix, the 2D projections of the object’s point cloud model are
computed within the current image. Subsequently, we resample N points from
the detected contact line represented by the Bézier curve. The nearest M points
included in the 2D projection points are selected and mapped to the 3D model
to determine the liquid level for each sample point. We take the average of levels
from N sampled points as the liquid level of the container. The FFB6D model
is pre-trained on DTLD to estimate the 6D poses and outputs results to liquid
level estimation module. The workflow is illustrated in Fig. 3.

5 Experiment

We conduct experiments to evaluate our model’s capabilities in contact line de-
tection and liquid level estimation, as detailed in 5.3 and 5.4, respectively, using
benchmark dataset DTLD. In 5.5, we benchmark liquid level estimation results
against both the SOTA method and the performance of professional technicians.
Furthermore, we perform ablation studies in 5.6 to justify the selected modules’
effectiveness and examine the impact of loss functions.

5.1 Dataset

We divide the dataset into training and test sets. We employ a ten-fold cross-
validation approach to segregate a subset for validation from the training dataset.
The test set provides an unbiased platform to assess the model’s efficacy on new,
unseen data. The training set consists of eleven sequences with 18,935 images,
while the test set includes three sequences from different laboratory settings,
amassing 5,614 images. Sequences selected for training are not included in the
test set to eliminate data leakage risk.
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Fig. 6: Illustration of CL-IoU. (a) and (b) represent two different patterns of the
Bézier curve to predict results in DTLD. While l̂ represents ground truth points and l
represents points on the predicted curve. CL-IoU can be calculated using the ratio of
the intersection (area within the red boundary lines) of the region Rg and the region
Rp, which are generated by extending l̂ and l with a width of e, to their union.

5.2 Baseline and Evaluation Metrics

We compare our method with the SOTA method [26]. Contact Line Intersec-
tion over Union (CL-IoU) metric is introduced as a standard to determine the
threshold range for identifying true positive samples. Utilizing the CL-IoU, we
can compute standard evaluation metrics, including recall, precision, and F1
score. Points on both the predicted and actual Bézier curves are sampled to
construct two line sets: l̂ = {p̂1, . . . , p̂N} and l = {p1, . . . , pN} (see Fig. 6).

By assigning a minimal, fixed width e, based on the spatial distribution of
sampled points, two lines are extrapolated into regions Rg and Rp.The CL-IoU
is computed as the ratio of the intersected to the united area of these regions.

CL-IoU =
Rg ∩Rp

Rg ∪Rp
(10)

For validation purposes, a CL-IoU threshold of 0.5 is adopted to discern true
positives, and performance is quantified using recall, precision, and the F1 score.

F1 =
2 · Precision ·Recall

Precision+Recall
(11)

Additionally, mF1 is calculated by averaging F1 from 0.5 to 0.95, separated by
0.05, mF1 = (F1@0.50 + F1@0.55 + · · ·+ F1@0.95)/10.

The mean absolute percentage error (MAPE) is employed for liquid level
estimation to quantify the relative deviation between the predicted and actual
liquid levels. The MAPE is expressed as:

MAPE =
1

N

N∑
i=1

∣∣∣∣∣ li − l̂i

l̂i

∣∣∣∣∣ (12)

5.3 Contact Line Detection Accuracy

To ascertain the contribution of the CRM to prediction performance, a com-
parative analysis is conducted between BCRM alone and the integrated TCLD
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Table 2: Contact line detection performance on DTLD evaluated by different met-
rics. Comparison results between TCLD and BCRM alone are listed to present the
improvement resulting from CRM.

Model Average CL-IoU Precision@0.50 Recall@0.50 F1@0.50 F1@0.75 mF1

BCRM-GT 0.526 0.569 0.555 0.562 0.269 0.292
TCLD-GT 0.5900.5900.590 0.675 0.6510.6510.651 0.6630.6630.663 0.3560.3560.356 0.3610.3610.361

BCRM-FFB6D 0.442 0.677 0.407 0.508 0.219 0.235
TCLD-FFB6D 0.469 0.7090.7090.709 0.445 0.547 0.279 0.312

approach. Metrics such as CL-IoU, precision, recall, F1 score, and mF1 are tab-
ulated in Tab. 2. TCLD method exhibits a precision of 10.33 points superior to
that of BCRM alone, signifying a substantial enhancement due to the CRM’s
ability to stabilize features in the ALI region, thereby facilitating improved con-
tact line detection. This advancement also addresses the complexity of optical
feature ambiguity caused by the dual transparency in the DTLD.

We repeat the manual review analysis to evaluate the contact lines impacted
by the obscured ALI features as predicted by TCLD. The findings reveal a
notable reduction in the previously reported rate of 48.34% to 21.72%, which
coherently reflects the CRM’s augmented performance in contact line detection.
Image samples with distinct viewpoints across three scenes are selected to visual-
ize the detected contact lines in Fig. 7. These samples demonstrate the prediction
outcomes of BCRM alone on raw images and the results of TCLD on images
where the ALI region has been color-stabilized by CRM.

5.4 Liquid Level Estimation Accuracy

The objective of the experiments is to evaluate liquid level estimation perfor-
mance. MAPE results are reported in Tab. 3. The experiments involve four
module combinations: two for contact line detection (BRCM and TCLD) and
two for 6D pose estimation (FFB6D and GT6D). The combination of TCLD
with GT6D yields the best results, achieving the lowest average MAPE of 0.186.
When GT6D is replaced by FFB6D, the average MAPE increases by 0.1, in-
dicating that FFB6D’s pose estimation accuracy affects liquid level estimation
accuracy. TCLD surpasses BCRM, suggesting that CRM’s image enhancement
contributes to increased estimation accuracy.

5.5 Comparative studies

Two comparative studies are performed to evaluate our liquid level estimation
method against the SOTA method and professional biomedical laboratory tech-
nicians (PBLTs) assessments.

First, we benchmark our method against the SOTA method [26], with both
methods undergoing training and testing on identical dataset splits. The results,
as depicted in Tab. 3, show that our method based on TCLD and FFB6D [18]
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BCRM TCLD Ground Truth

Fig. 7: Visualizations of contact lines predicted by BCRM (left in red curves) and
TCLD (medium in blue curves) methods. Green lines represent ground truth.

Table 3: Liquid level estimation MAPE results of our methods and the SOTA CMU-
Liquid [26] method on DTLD. Our methods respectively use 6D pose and object bound-
ing box estimated by FFB6D [18] or provided by ground truth.

Method T25 Cell Flask T75 Cell Flask T175 Cell Flask G-rex Bioreactor Average

CMU-Liquid [26] 0.611 0.212 1.232 0.808 0.720
BCRM-FFB6D 0.152 0.151 0.198 0.487 0.305
BCRM-GT6D 0.104 0.091 0.146 0.457 0.203
TCLD-FFB6DTCLD-FFB6DTCLD-FFB6D 0.145 0.137 0.193 0.473 0.2860.2860.286
TCLD-GT6DTCLD-GT6DTCLD-GT6D 0.0940.0940.094 0.0740.0740.074 0.1170.1170.117 0.4510.4510.451 0.1860.1860.186

outstrips the SOTA method, evidenced by a substantial 0.434 reduction in
MAPE. The lowest MAPE recorded with our approach is in the context of the
T75 cell flask, corresponding to an actual liquid level deviation of 5.5 mm.

Second, five PBLTs, averaging eight years of experiment experience, are pro-
vided with twenty images with distinct viewpoints from the DTLD dataset to
estimate liquid levels in the transparent containers. The PBLTs encounter chal-
lenges due to the varying object angles. Tab. 4 presents the MAPE for each
PBLT, with the collective average MAPE at 0.539. Human assessment outper-
forms CMU-liquid [26] and performs comparable capability with our method.

Table 4: Compararative MAPE results with PBLTs.

PBLT ID T25 Cell Flask T75 Cell Flask T175 Cell Flask G-rex Bioreactor Average

PBLT-A 0.911 0.571 0.328 0.938 0.687
PBLT-B 0.735 0.733 0.239 0.997 0.676
PBLT-C 0.334 0.420 0.473 0.552 0.445
PBLT-D 0.514 0.411 0.411 0.170 0.377
PBLT-E 0.506 0.760 0.422 0.359 0.512

PBLT-AvgPBLT-AvgPBLT-Avg 0.600 0.579 0.375 0.632 0.539

TCLD-FFB6DTCLD-FFB6DTCLD-FFB6D 0.145 0.137 0.193 0.473 0.286
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Table 5: Three comparisons to testify the effectiveness of BCRM and CRM based on
two TCLD models: FFB6D [26] and GT6D.

prior source LBezier Lresidual Precision@0.50 Recall@0.50 F1@0.50 F1@0.75 mF1 MAPE

FFB6D
0.633 0.340 0.442 0.165 0.187 0.346

✓ 0.677 0.407 0.508 0.219 0.235 0.305
✓ ✓ 0.709 0.445 0.547 0.279 0.312 0.286

GT6D
0.8300.8300.830 0.318 0.460 0.270 0.269 0.238

✓ 0.569 0.555 0.562 0.269 0.292 0.203
✓ ✓ 0.675 0.6510.6510.651 0.6630.6630.663 0.3560.3560.356 0.3610.3610.361 0.1860.1860.186

5.6 Ablation Study

We construct three comparisons based on two TCLD models (FFB6D and GT6D):
1) without using BCRM and CRM during training, 2) using only BCRM, and
3) using both BCRM and CRM to analyze the effectiveness of two modules in
improving TCLD metrics. We report the performance of these counterparts in
terms of F1/mF1/MAPE on the DTLD dataset. The results of the ablation study
in Tab. 5 reveal the optimal model performance when leveraging both BCRM
and CRM implemented by the composite loss function that includes all indi-
vidual loss components. The performance diminishes when the model is trained
without the supervision of LBezier or Lresidual.

6 Conclusions and Limitations

This study pioneers liquid level estimation for dual transparent scenes by in-
troducing a dataset, theoretical framework, and practices. We outline the mul-
tifaceted challenges associated with multi-instance scenarios typical in ABLs.
We establish the DTLD dataset for dual transparent objects and introduce the
TCLD method, which enhances liquid level estimation by predicting Bézier curve
representations of contact lines. TCLD’s novelty stems from its approach to ad-
dressing these new challenges, utilizing modules that, while possibly proposed in
other contexts, are uniquely applied here. Specifically, we introduce the Bézier
Curve model for enhanced contact line detection accuracy and the 6D pose es-
timation model, transforming 2D contact lines into 3D for the precise location
of the ALI. Our experimental results affirm the superior performance of TCLD
in both contact line detection and liquid level estimation, outperforming SOTA
and comparable to PBLTs. Nevertheless, considerable room remains to improve
the model’s performance in addressing optical complexity under varying illu-
mination. We plan to extend the DTLD with new scenes, lighting conditions,
objects, and materials to ensure broad coverage, balance feature distributions,
and reduce potential biases.
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